sábado, 16 de septiembre de 2017

Mission accomplished

Cassini, el robot que exploró Saturno durante 13 años (9 más que los previstos), terminó ayer su existencia zambulléndose en la atmósfera del planeta gigante. Sus motores de posición lograron mantener su antena apuntando a la Tierra y transmitiendo datos del magnetómetro durante unos 30 segundos más que los previstos. Finalmente la presión de la atmósfera los abrumó, la nave rotó de manera incontrolada, y aproximadamente un minuto después se desintegró. Sus átomos ahora forman parte de Saturno. Las pastillas de plutonio de su pila nuclear seguramente fueron los últimos fragmentos que se hundieron, íntegros por un rato, en la aplastante atmósfera sin fondo del planeta. La tapa de un espectroscopio, expulsada poco después de la entrada en órbita en 2004, todavía debe estar en órbita, en algún lugar del sistema saturniano.


El cartelito dice NASA, pero vale la pena recordar que 27 naciones y tres agencias espaciales participaron en esta exploración de Saturno. Casi 600 GB de datos, más de 3000 de trabajos científicos publicados, casi 400 mil imágenes a disposición de quien quiera usarlas (y que tantas veces hemos usado en este blog): estas misiones son de toda la humanidad. Los que recordamos la época en que los planetas eran apenas puntitos de luz no dejamos de maravillarnos. Saturno, sus anillos y sus satélites son ahora mundos, son nuestros, son la joya de la corona del sistema solar.

El jueves, mientras caía sobre Saturno, Cassini tomó sus últimas fotos mostrando el sitio del impacto. En ese momento, un día antes del impacto, el lugar estaba del lado nocturno del planeta, si bien al momento de la caída ya había amanecido. La imagen, de todos modos, se ve bastante bien porque está iluminada por los anillos. ¡Nunca es del todo de noche en Saturno! En el sitio de Cassini hay versiones en color de esta foto, y también en infrarrojo mostrando la estructura de las nubes.

¿Por qué hubo que estrellar a Cassini? ¿No podían dejarlo en paz, en órbita de Saturno por toda la eternidad? Sus propios descubrimientos lo condenaron. Cassini descubrió que el pequeño satélite Encélado, que el robot fotografió en su última órbita escondiéndose tras las brumas de Titán, tiene agua líquida debajo de un glaciar global. Agua que surge en forma de géiseres desde fracturas del hielo, y que aparentemente está en contacto con minerales y una fuente de calor. Encélado es un mundo donde puede haber vida extraterrestre, un segundo génesis que Cassini no podía arriesgarse a contaminar con microbios terrestres en una caída incontrolada en el futuro. Lo mejor era incinerar el robot en la atmósfera de Saturno, y aprovechar para hacer una campaña de mediciones en órbitas rasantes de los anillos y la atmósfera. En el próximo año aparecerán resultados novedosos, estoy seguro, y todos los datos y fotos serán escudriñados y exprimidos a fondo en años por venir.

Vienen unos años vacíos de exploración del sistema solar exterior. El sobrevuelo de MU69 por parte de New Horizons dentro de un año y medio será una excepción fugaz. Juno, en órbita de Júpiter, será estrellada en febrero del 2018. La exploración de Europa, el satélite de Júpiter que también tiene un océano de agua líquida donde se sospecha la posibilidad de vida extraterrestre, no comenzará hasta bien entrada la próxima década. La exploración de Urano y Neptuno, de los cuales todavía sabemos muy poco, y el descenso en los mares de Titán o en el propio Encélado, están en pañales. Quien sabe si llegaremos a verlos. Es muy probable que Cassini sea, para siempre, nuestro robot espacial favorito.



¿No sabés nada de Cassini y Saturno, y te da curiosidad? Bajate el librito que prepararon para celebrar el fin de la misión: The Saturn system through the eyes of Cassini.

Las imágenes son de NASA/JPL/Cassini. La última imagen es una impresión artística de NASA/JPL/Caltech, editada por Jason Major

Compartir:

sábado, 9 de septiembre de 2017

La tercera no fue la vencida

Eta Carinae es una de las estrellas más extraordinarias del universo. Es en realidad un par de estrellas, ambas muy pesadas, una en órbita de la otra danzando en una elipse muy parecida en forma y tamaño a la del cometa Halley alrededor del Sol. La mayor es una superpesada de casi 100 masas solares, seguramente una de las más pesadas de la Galaxia. Estas estrellas descomunales, como ya he contado, viven muy poco tiempo. Queman su combustible nuclear a una velocidad desenfrenada y acaban explotando como supernovas, sembrando el espacio interestelar de elementos pesados, de los cuales nacen las siguientes generaciones de estrellas y planetas.


Pero lo que hace extraordinaria a Eta Carinae es que ya explotó. Y sobrevivió. En 1843 explotó con (casi) tanta energía como una supernova. La explosión creó la Nebulosa Homúnculo, el objeto favorito de nuestro Enrique Gaviola, como ya he contado. El Homúnculo es el material de la explosión, y por supuesto ha seguido expandiéndose a lo largo de los casi dos siglos transcurridos. La exquisita visión del Telescopio Espacial Hubble ha permitido observar esta expansión a lo largo de dos décadas:


Los autores del estudio han podido medir con enorme exactitud la velocidad de expansión de casi 800 fragmentos individuales. La mayor parte de ellos se mueven a 300-600 km/s, lo cual es una velocidad enorme aun para objetos astronómicos. Algunos, sin embargo, se mueven a unos increíbles 1500 km/s. De Bariloche a Buenos Aires en un segundo.

A lo largo de los 21 años de observación, e incluso comparando con fotos de 1950, no se observa ningún efecto de frenado. Cada pedacito de nebulosidad se mueve a velocidad constante desde el centro, donde está la estrella. Y aquí es donde la cosa se pone interesante: rastreando hacia atrás pueden calcular cuándo cada pedacito salió de la estrella. El resultado está representado con flechitas de colores. El largo de la flecha es la velocidad, y el color es la fecha de partida:


Puede verse que hay tres colores predominantes. Tres fechas bien definidas. Eta Carinae ya había explotado antes:

En azul: alrededor de 1250 el Imperio Mongol se expandía por Asia, y Eta Carinae tuvo una rara explosión asimétrica (sólo hacia un lado de la estrella).

En verde: alrededor de 1550 la civilización europea se expandía por el planeta, y Eta Carinae explotó de nuevo.

En rojo: en 1843, mientras Poe publicaba El corazón delator y comenzaba el largo sitio de Montevideo, Eta Carinae sufrió su Gran Erupción y nació el Homúnculo.

Evidentemente debe haber un mecanismo que hace que Eta Carinae explote de manera recurrente casi como una supernova y sobreviva. Quien quiera explicar qué es lo que pasa con Eta Carinae tendrá que explicar este mecanismo. La verdad que no sé si alguien tiene la más remota idea.

¿Será la cuarta la vencida? Ojalá que sí, y que podamos verla.


Kiminki, Reiter y Smith, Ancient eruptions of η Carinae: A tale written in proper motions. Mon. Not. R. Astron. Soc. (2016) 463 (1): 845-857. (arxiv.org/abs/1609.00362). Las imágenes son de NASA/Hubble/STScI y los autores (Megan, Megan y Nathan).

Compartir:

sábado, 2 de septiembre de 2017

La botella es el mensaje

Acaban de cumplirse 40 años de que leí en la primera página de La Prensa, en los quinchos de Muni mientras mi papá preparaba el asado, la noticia del lanzamiento de la Voyager 2. Una foto borrosa del cohete Titán despegando con el robot en la gruesa punta. El viaje de las Voyager fue extraordinario, nos reveló un sistema solar al que nos hemos acostumbrado pero que, hasta hace tan poco, era casi desconocido. Y desde el confín del reino de los planetas Voyager 1 tomó, el 14 de febrero de 1990, el famoso "retrato de familia", en el que la Tierra aparece como un "punto azul pálido" flotando en un rayo de sol, que inspiró a Carl Sagan algunas de sus mejores líneas. En el reciente documental The farthest vemos a Sagan en una conferencia de prensa comentando la imagen y su valor alegórico acerca de la condición humana. Y a continuación, en lugar de poner el famoso texto de Pale Blue Dot, enganchan con Eclipse, del disco Dark Side of the Moon de Pink Floyd, un tema de 1973 que parece hablar premonitoriamente sobre lo que encierra ese punto azul pálido:

All that you touch
And all that you see
All that you taste
All you feel

And all that you love
And all that you hate
All you distrust
All you save

And all that you give
And all that you deal
And all that you buy,
Beg, borrow or steal

And all you create
And all you destroy
And all that you do
And all that you say

And all that you eat
And everyone you meet
And all that you slight
And everyone you fight

And all that is now
And all that is gone
And everything under the sun is in tune
But the sun is eclipsed by the moon

Verdaderos sueños de cualquier ingeniero, las Voyager siguen funcionando sin mantenimiento alguno 40 años después de lanzadas al hostil espacio exterior. Voyager 1 ya transita el medio interestelar, habiendo salido de la burbuja del viento solar en 2012. Voyager 2 lo hará pronto. La Deep Space Network se comunica con ambas casi a diario, para recibir las mediciones que nos envían de su viaje interestelar. En unos 10 años ya no tendrán electricidad suficiente para sus instrumentos y se apagarán definitivamente. Pero sus cuerpos metálicos, y los discos con saludos e imágenes de la Tierra que llevan a bordo, están destinados a durar muchísimo tiempo. Son ya verdaderos objetos arqueológicos, testimonios de nuestra existencia que sobrevivirán, no sólo a la humanidad, sino a nuestra propia estrella. Es bueno saberlo. La botella es el mensaje.


La captura de pantalla de la Deep Space Network, que muestra la antena 63 de Madrid recibiendo medio nano-nanowatt, a 159 b/s, es del 28/8/2017. Las fotos del Family Portrait de la Voyager 1 son de NASA/Voyager 1. Eclipse es de Pink Floyd/Roger Waters. Recomiendo no sólo The farthest, de PBS, sino también el video más cortito que lo acompaña, Second Genesis, sobre Encélado y la posibilidad de vida extraterrestre que encierra.

En The farthest se ve un sketch de Saturday Night Live donde Steve Martin revela el mensaje que llega de vuelta de los extraterrestres que recuperan una Voyager: Send more Chuck Berry.

Compartir:

sábado, 26 de agosto de 2017

El ojo en el cielo

Como un ojo en el cielo, la cámara EPIC a bordo del satélite DSCOVR mira fijamente el hemisferio diurno de la Tierra desde el punto de Lagrange L1, un millón y medio de kilómetros en dirección al Sol. Hace unas fotos preciosas, en alta definición, en 10 bandas desde el ultravioleta al infrarrojo. Su principal propósito es el monitoreo de la dinámica de las nubes, la vegetación, el ozono y los aerosoles. Todo pasa a un segundo plano cuando hay un eclipse de Sol:


Descárguenla: es un gif animado de 1K píxels de ancho (probablemente lo están viendo reducido en esta columna). Lo hice con una docena de fotos del 21 de agosto, abarcando la totalidad del eclipse que cruzó de costa a costa los Estados Unidos, y que convocó la atención planetaria.

¿Lo viste por la tele o la Web? ¿Tuviste la suerte de estar allí? ¿Te dio ganas de ir al próximo? Andá haciendo planes. El año que viene no hay ningún eclipse total, apenas tres eclipses parciales (a no desdeñarlos). Pero atentos, porque el próximo eclipse solar total cruza Chile y la Argentina, el 2 de julio de 2019: San Juan, La Rioja, San Luis, Córdoba, Santa Fe y Buenos Aires se encuentran en su recorrido. Ya habrá detalles, a no apurarse. Y el siguiente eclipse total también cruza Chile y la Argentina, el 14 de diciembre de 2020, desde el norte neuquino hasta la costa atlántica de Río Negro, atravesando toda la Patagonia norte...

Mientras tanto, aprovechemos para desmitificar un poco los eclipses, en base a las cosas que escuché y leí estos días:

1. Que en el momento del eclipse pesás menos (medio kilo menos). ¡FALSO!
Es cierto que la gravedad de la Luna afecta la Tierra: las mareas son su manifestación más evidente. Desde el punto de vista de las mareas, un eclipse no es más que una Luna nueva. Es cierto que durante la Luna nueva y la Luna llena las mareas son más pronunciadas. Pero las mareas sólo se perciben en objetos muy grandes porque dependen de la diferencia entre la gravedad en un lado y en otro. El hecho de que haya tanta agua en nuestro cuerpo no nos hace susceptibles de las mareas: por un lado, aunque las mareas del océano son las más evidentes, el agua es irrelevante en el fenómeno, ya que la gravedad afecta toda la materia por igual; por otro lado, no somos suficientemente grandes.

2. Que son eventos súper raros. ¡FALSO!
Los eclipses, como las sandías y los turistas, vienen en temporadas. Hay dos o tres temporadas por año, separadas unos seis meses, con uno o dos eclipses solares en cada una. Todos los años hay eclipses solares, y casi todos los años hay eclipses totales (¡en 2018 no hay ninguno!). Son eventos raros si uno se queda parado en un lugar de la Tierra. Si querés ver un eclipse, en particular un eclipse total, conviene ir a buscarlo.

3. Que durante el eclipse total se hace de noche. ¡VERDADERO!
El cielo se oscurece como si fuera el comienzo de la noche, se encienden las luces automáticas, y hasta se ven las estrellas brillantes y los planetas (si alguien se acuerda de mirarlos). Todo alrededor, cerca del horizonte, se ve como un raro amanecer circular: es el borde de la sombra de la Luna.

4. Que durante el eclipse baja la temperatura y cambia el viento. ¡VERDADERO!
La temperatura puede bajar varios grados y el viento, que responde a los cambios de temperatura y presión del aire, también lo siente. Inclusive durante el eclipse anular de febrero de 2017 sentimos este efecto, aunque el cielo siguió viéndose celeste.

5. Que los animales se confunden y se preparan para dormir. ¡Mmmm!
No conozco ningún reporte fidedigno de esto*, aunque es completamente razonable: realmente parece una noche súbita, y es lógico que algunas aves, por ejemplo, se dispongan a dormir. Un par de minutos después "amanece" y listo, siguen su vida lo más campantes, apenas confundidas.

* Mi amigo Santiago, físico argentino que trabaja en la NASA, fue a ver el eclipse y me contó que "los pájaros se callaron".

6. Que las cabras se desmayan. Falso, sin mayores comentarios.

7. Que si mirás el eclipse sin los anteojitos especiales te quedás ciego. ¡VERDADERO! (pero no del todo)
Hay mucha exageración con esto. Para empezar, los dos minutos de totalidad pueden mirarse a ojo desnudo. El Sol, después de todo, está detrás de la Luna. Nadie se queda ciego por mirar la Luna. Es cierto que es peligroso mirar fijamente el Sol durante las fases parciales del eclipse. Pero todos hemos mirado el Sol alguna vez, fugazmente, sin quedarnos ciegos. No hay daño permanente si se mira el Sol durante un par de segundos, y puede ser interesante ver el famoso "anillo de diamante" y las "cuentas de Baily". Sólo nos deslumbrará. Si mirás el Sol a ojo desnudo durante varios minutos, o durante varias horas, te quedarás ciego, haya o no haya eclipse. Eso sí: nunca, NUNCA, hay que mirar el Sol a través de un telescopio o binoculares sin un filtro adecuado.

8. Que las embarazadas no deben mirar el eclipse porque daña al bebé. ¡FALSO!
El eclipse sólo bloquea parte de la luz del Sol. ¿Qué efecto podría tener eso sobre un embarazo? Ocurre cada noche, cuando el Sol se esconde detrás de la Tierra, o cuando la embarazada se pone bajo techo...

9. Que cualquier alimento preparado durante el eclipse resulta envenenado. ¿Qué?
Ídem. ¿Nunca cocinaste de noche? Igual, no sé a quién se le ocurriría quedarse en la cocina en lugar de salir a ver el eclipse...

10. Que el eclipse produce efectos "energéticos" o "espirituales" en las personas. ¡Mmmm!
Si contamos el hecho de ver algo hermoso como un efecto espiritual, sí. Nada más.

A propósito de esto último, escuché comentarios que me sorprendieron. Gente un poco "harta" del eclipse, o que no entiende por qué tanta historia si no es un fenómeno misterioso, como pudo ser en otros tiempos: es apenas una cosa pasando delante de otra. La razón por la que nos fascina un eclipse, por la que millones de personas se sienten atraídas como para viajar miles de kilómetros para verlos, no es que sean un misterio ni produzcan cambios espirituales. Es simplemente disfrutar de algo raro y hermoso. No es más raro que eso. Escuchamos una y otra vez una sinfonía de Beethoven porque disfrutamos de algo hermoso; si no, bastaría escucharla una sola vez en la vida y listo.


Esta preciosa foto de la corona solar (la gigantesca atmósfera del Sol que sólo se ve durante los eclipses totales) es de Mark Rosengarten, quien la compartió en Spaceweather junto con un encantador relato de su experiencia. La estrella a la izquierda es Regulus.


Si no te gusta Beethoven, ponele Despacito, o lo que te guste.

Compartir:

sábado, 19 de agosto de 2017

Quién descubre las supernovas

Astrónomos chinos observaron la supernova del año 185. La de 1006, la más brillante de la Historia, fue destacada por observadores de muchas regiones del mundo. En 1054 otra supernova fue vista desde el Lejano y el Cercano Oriente, y tal vez la notaron los Anasazi en Norteamérica. Ya en tiempos modernos, Tycho Brahe descubrió la supernova de 1572, y Johannes Kepler la de 1604. En 1885 se descubrió por primera vez una supernova por medios telescópicos y fuera de la Vía Láctea (en la "nebulosa" de Andrómeda, antes de que supiéramos que era otra galaxia). Cinco supernovas en un milenio.

La observación de otras galaxias, a través de telescopios, permitó descubrir un puñado más en la primera mitad del siglo XX (52 hasta 1950). A pesar de su exiguo número, a los astrónomos no se les escapó la importancia de estas explosiones estelares en el gran esquema de la evolución de la vida, el universo y todo lo demás. Su teoría (y su nombre) fueron acuñados en la década de 1930 por Walter Baade y Fritz Zwicky, y reelaborados por Hoyle en los 40s.

A partir de los años 60 la electrónica permitió desarrollar programas dedicados a la detección de supernovas. El primero de ellos embolsó 14 en dos años. A aquellas 52 se agregaron 250 entre 1951 y 1971. Aún así el ritmo fue lento durante la mayor parte del siglo. La famosa supernova 1987A (en la Nube Mayor de Magallanes) fue la primera de ese año, descubierta recién a fines de febrero. En comparación, la supernova de la que nos hemos ocupado recientemente, SN2017cbv, fue descubierta el 10 de marzo. La designación cbv, ¿a cuántas supernovas corresponde? De acuerdo a la demencial nomenclatura heredada de una era de menos de 26 supernovas por año, la designación cbv corresponde a la supernova número... 26 (A-Z) + 262 (aa-zz) + 262 (aaa-azz) + 262 (baa-bzz) + 26 (caa-caz) + 22 (cba-cbv)... ¡2012! ¡En menos de tres meses!

En el sitio Bright Supernova, bien actualizado de manera automática, se pueden consultar estadísticas. En los 18 meses anteriores al 23 de marzo (cuando hice mis observaciones de SN2017cbv) había registradas 11640 supernovas. Ése es más o menos el ritmo actual, unas 8 mil supernovas por año. ¿Quién las descubre?

Robots. Algunos construídos especialmente para descubrir supernovas. Otros que las observan como subproducto. Los más prolíficos son:

Pan-STARRS: observador de asteroides, en Hawaii (casi el 60% del total).

Gaia: astrometría de precisión, en el punto de Lagrange L2 de la órbita de la Tierra (un 13%).

Catalina Real-time Transient Survey: en Arizona y Australia (6%).

OGLE (Optical Gravitational Lensing Experiment): Observación de la misteriosa materia oscura desde Las Campanas, Chile (4%).

ASAS-SN (se pronuncia assassin, All-Sky Automated Survey for Supernovae): múltiples telescopios (en realidad, lentes Nikon de 400 mm f/2.8...) en Hawaii y Chile (3%).

Sólo 352 fueron descubiertas por aficionados. Me da pena que ASAS-SN, que tiene el mejor nombre y fue diseñado específicamente para descubrir supernovas, tenga apenas el 3% de los descubrimientos...

¿Y quién las observa? En buena parte, las más brillantes siguen siendo escudriñadas por aficionados, que vuelcan sus observaciones a la base de datos de la AAVSO. Y allí vemos una enorme diferencia entre los hemisferios norte y sur. SN2017cbv, cuatro meses después de su descubrimiento, tiene 51 mediciones de 6 observadores australes. SN2017eaw, una supernova de brillo similar pero visible desde el hemisferio norte, tiene más de 1700 realizadas por 91 observadores en dos meses. Hay una oportunidad para observadores de estrellas variables en el hemisferio suuuur...



La imagen de la Nebulosa del Cangrejo, restos de la supernova de 1054, es del Telescopio Espacial Hubble (NASA/ESA/STScI). La imagen de Gaia es de ESA/Ducros. Una lista completa de las 302 supernovas de 1885 a 1971 está en Kowal and Sargent, Supernovae Discovered Since 1885, The Astronomical Journal 76:756 (1971).

Compartir:

sábado, 12 de agosto de 2017

Eclipses, eclipses, eclipses

A menos que vivas en la proverbial burbuja, seguramente sabés que el próximo 21 de agosto hay un eclipse de Sol. Desde toda Norteamérica, América Central y el Caribe, y toda la región ecuatorial de Sudamérica, el Sol se verá eclipsado en mayor o menor medida. El eclipse será total desde una estrecha franja que cruza los Estados Unidos de costa a costa.

Si podés viajar, viajá. Y si no podés, fijate que en los próximos años habrá dos lindos eclipses totales en Sudamérica, cruzando Chile y Argentina. Uno será en pleno invierno en 2019, y el otro en pleno verano de 2020. Mirá estas simulaciones de la sombra de la Luna sobre la Tierra, y andá planeando a dónde vas a ir a verlos (poné pantalla completa)...



Si estás cerca de la línea de totalidad, si estás donde el eclipse será del 90%, no te conformes. Aunque sea del 99.5%, no te des por satisfecho. La diferencia entre un eclipse parcial del 99.5% y uno total no es de 0.5%. Es de cien por ciento. La superficie brillante del Sol (la fotósfera) es tan brillante que sólo cuando está completamente oculta por la Luna el cielo se oscurece como si fuera de noche, y puede verse la corona del Sol, una especie de atmósfera muy extendida formada por filamentos caprichosos siempre distintos, que obedecen al campo magnético solar.

En febrero de este año tuvimos un hermoso eclipse anular cruzando la Patagonia. La Luna ocultó más del 97% del Sol. Se sintió un descenso de temperatura de varios grados. Pero definitivamente fue un eclipse parcial: con cielo celeste, sin estrellas, y el Sol se podía mirar directamente sólo a través de un filtro muy oscuro. Las fotos tan lindas que tomamos son engañosas porque están tomadas a través de esos filtros:


Durante un eclipse total, en cambio, sin filtro alguno, se puede ver y fotografiar esto:


Hacé lo imposible. No te los pierdas.


La foto del eclipse total es de Luc Viatour, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1107408.

Compartir:

sábado, 5 de agosto de 2017

La Inmaculada y la Maculada

En Roma hay cuatro basílicas papales, las del más alto rango entre las iglesias católicas: San Pedro (en el Vaticano), San Giovanni in Laterano (la catedral de Roma, una archibasílica que ostenta el título de Madre y Cabeza de Todas las Iglesias de la Ciudad y del Mundo, niente meno), San Pablo Extramuros (un poco lejos, como su nombre lo indica, así que no fui), y Santa María Maggiore, muy cerca de Roma Termini, que parece una iglesia incrustada en un palacio.

Lo que me llevó a visitarla fue un detalle particular: la cúpula de la Capilla Paulina, pintada al fresco por Ludovico Cigoli. Me encontré con que estaba destinada a la oración de los fieles, así que me quedé afuera para poder sacar fotos. No pude ver la cúpula entera, pero por suerte sí la parte que me interesaba. Ahí en medio vemos una Inmaculada, ahora se las muestro más grande.

Como corresponde a una iglesia de semejante categoría, todo es enorme. De manera que para verla en detalle tuve que recurrir a un artilugio popularizado por un amigo del artista: tuve que usar un pequeño telescopio. Sí, Cigoli era gran amigo de Galileo Galilei, quien lo consideraba el mejor pintor de su época.

La Virgen aparece representada, según una iconografía habitual desde la Edad Media, como la Mujer del Apocalipsis: "En esto apareció un gran prodigio en el cielo, una mujer vestida del sol, y la luna debajo de sus pies, y en su cabeza una corona de doce estrellas" (Revelación, 12).

Efectivamente, está parada sobre la Luna. Pero no cualquier luna. Cigoli pintó LA Luna, la que su amigo había mostrado, a través del telescopio, en toda su rugosa mundanidad.

La representación habitual de esta escena muestra siempre una Luna lisa, una Luna celestial, hecha de una materia perfecta, divina y distinta de la Tierra. Las evidentes manchas de su superficie, que vemos incluso sin telescopio, se atribuían a que por su proximidad su superficie impoluta reflejaba las imperfecciones terrestres. Aquí hay varias que fui fotografiando en Roma. La de Cigoli bien podría ser la única del mundo con una Luna realista.


He aquí el detalle, rotado y conformado para recuperar la esfericidad perdida por la perspectiva. Podemos ver numerosos cráteres en la parte iluminada, inclusive algunos con sus macizos centrales, y especialmente a lo largo del terminador (la línea que separa el día de la noche lunares). Y en medio de la oscuridad de la noche sobresalen los picos iluminados de las montañas, las que Galileo midió con notable exactitud como más altas que los Alpes. Vemos, inclusive, que la noche lunar no es tan oscura como los pliegues más oscuros del vestido: es tal vez la luz cenicienta, que Galileo también señaló en sus observaciones.

A mí me parece que la Luna representada por Cigoli no es ninguna de las cinco que figuran en Sidereus Nuncius, donde Galileo da cuenta de sus primeros descubrimientos astronómicos. Ésas son cuatro lunas en cuarto y una creciente de cuatro días. Para mí que es esta otra, una luna de cinco días que aparece en segundo lugar en las acuarelas cosidas al manuscrito de Sidereus Nuncius. Es probablemente una observación del 1 de diciembre de 1609, tal vez la segunda a través del telescopio.

Reproducida en el Virtual Moon Atlas se ve así. Dos grandes cráteres en el terminador podrían estar en la pintura de Cigoli: Picolomini o Fracastorius.

La naturaleza de la Luna como un mundo con montañas, valles y planicies fue uno de los mayores descubrimientos de Galileo. Al observar que la Luna era como la Tierra, naturalmente eso quería decir que la Tierra era como la Luna: un astro vagabundo, un planeta, aunque montados sobre ella no lo notemos. El copernicanismo cobraba ímpetu al recibir evidencia física. En pocos años llevaría a Galileo a escribir el Diálogo sobre los dos Sistemas del Mundo, y al consiguiente juicio y condena a prisión domiciliaria de por vida, fijate un poco. Mientras tanto la manifiesta injusticia de su condena quedaba plasmada artísticamente allí arriba, en un rinconcito de una de las iglesias más sagradas de la Cristiandad.


La datación de las observaciones de Galileo es complicada. Mi favorita es la de Whitaker, Galileo's Lunar observations and the dating of the composition of "Sidereus Nuncius", J. His. Astron. 9:155-169 (1978).

También es interesante The Virgin and the Telescope: The Moons of Cigoli and Galileo, de Booth y van Helden, Science in Context 14:193-216 (2001).
 
Las fotos son mías. La acuarela de la Luna es de Galileo. La simulación de la Luna está hecha con el Virtual Moon Atlas

Compartir:

sábado, 29 de julio de 2017

Las cuerdas de mi guitarra

Los que la organizaron dicen que fue la expedición astronómica más compleja de la Historia. Yo no sé; creo que no alcanza las dificultades del desventurado Guillaume Le Gentil para observar el tránsito de Venus. Pero es cierto que fue una expedición complicada.

Tres naves espaciales: New Horizon en las profundidades transplutónicas, el Telescopio Espacial Hubble en órbita terrestre y Gaia en el punto de Lagrange L2. Más SOFIA: un telescopio infrarrojo enorme en un Boeing 747 ¡con una abertura en el costado! Más 25 telescopios portátiles de 40 cm, en tres sesiones en Argentina y Sudáfrica. El 3 de junio en Mendoza y Sudáfrica, y el 10 de julio desde SOFIA, todas sin éxito aparente. El 17 de Julio, desde los alrededores de Comodoro Rivadavia, todo culminó en ¡2 segundos de observación exitosa!

¿Qué fue lo que observaron? Esto:


¿Y qué es? Es un mini eclipse. 2014 MU69, un planetita de unos 20 km de diámetro, más lejano que Plutón, apenas descubierto en 2014 e increíblemente tenue, ocultó una estrella en la constelación de Sagitario. Hasta el pelo más delgado hace su sombra en el suelo, y la sombra de 2014 MU69, moviéndose fugazmente sobre el paisaje terrestre a 24 km/s, fue detectada por 5 de los 25 telescopios dispuestos en una línea transversal a su probable y esperada trayectoria. Cada uno de estos 5 telescopios registró en video el ocultamiento durante una fracción de segundo. Y cada una de esas interrupciones define una cuerda (en el sentido geométrico) de la silueta del mundito. Entre todas, nos dan una idea muy precisa de su forma y dimensiones, como se ve en la figura.

2014 MU69 es el próximo destino de New Horizons, que el 14 de julio de 2015 sobrevoló exitosamente Plutón, revelando una geografía extraordinaria en los confines del sistema solar. Decididos a exprimir su robotito al máximo, buscaron afanosamente y finalmente descubrieron otro objeto del Cinturón de Kuiper que quedaba en la misma trayectoria, un poco más allá. 2014 MU69 está tan lejos que no sabemos prácticamente nada sobre él. Su tamaño, si tiene satélites o anillos, y su órbita exacta, son cruciales para el éxito del sobrevuelo, que ocurrirá el 1 de enero de 2019. El ocultamiento de la luz de una estrella era la única chance de obtener más información antes de llegar. Los días 3 de junio, 10 y 17 de julio se produjeron ocultamientos, y allí fueron los astrónomos. El 3 de junio la sombra cruzó el Atlántico, y observaron desde Sudáfrica y Sudamérica. El 10 de julio el evento era en alta mar y observaron desde SOFIA sobre el Pacífico.

He visitado los sitios desde donde observaron el 17 de julio, en la costa del Golfo San Jorge, pero en verano y de día. No quiero ni pensar lo que habrá sido de noche y en invierno (esa noche medí -8.9°C en mi balcón en Bariloche). Aquí hay una foto de uno de los telescopios, metido en una trinchera excavada en las conchillas de la patagónica playa. Según relataron los astrónomos, no habrían podido hacerlo sin el compromiso y la dedicación de las autoridades, las instituciones y los colaboradores argentinos. Para reducir la contaminación luminosa les cortaron 2 horas el tráfico de la ruta 3 y les apagaron el alumbrado público. Además les consiguieron camiones y mamparas para frenar el viento. Bravo por el intendente de Comodoro, la Universidad de la Patagonia San Juan Bosco, la CONAE, la Fuerza Aérea, y seguramente muchos más. Ahora hay que esperar hasta el primer día de 2019 para ver de cerca a 2014 MU69. Que se merece un nombre propio. Yo propongo Comodoro.



Las imágenes son de NASA/New Horizons/JHUAPL, tomadas de Twitter en los días posteriores a la observación. Las cuerdas de colores son de este tweet, apócrifas. La noticia del éxito el 17 de julio está acá, y la del fracaso (disimulado) del 3 de junio y el 10 de julio está acá. Uno de los astrónomos contó de manera encantadora su experiencia en Mendoza, acá. La imagen con la órbita de MU69 en Celestia es mía. Visto desde la Tierra el objeto se veía un poco más arriba en la Tetera de Sagitario, cerca de Nunki. El título de la nota, por supuesto, hace alusión a la milonga de Gardel y Razzano.

Compartir:

sábado, 22 de julio de 2017

Pronóstico nublado

La semana pasada el robot Juno, en órbita de Júpiter, en su séptima aproximación al planeta gigante sobrevoló la famosa Gran Mancha Roja. Las imágenes de JunoCam son difíciles de procesar, pero por suerte en Unmannedspaceflight hay gente que hace maravillas. He recortado y retocado algunas para mostrar aquí; como ésta, basada en una de Gerald Eichstädt:


Vista de cerca, la Gran Mancha Roja se manifiesta como algo nunca visto en la Tierra, un maelstrom de tormentas adentro de tormentas. Es tan grande que podría tragarse a la Tierra entera, como en este montaje hecho por Seán Doran, también basado en una imagen de Gerald (uno de los magos que descubrió cómo procesar las imágenes raw de JunoCam). Júpiter es realmente inmenso. Mil Tierras cabrían dentro. Todos los planetas del sistema solar, incluso los otros gigantes, cabrían dentro a la vez. Es una joya única de nuestro sistema solar, y bien vale la pena entender cómo funciona.

En el punto más bajo de cada órbita, Juno sobrevuela Júpiter a pocos miles de kilómetros de altura. Está pasando mucho más cerca que los exploradores anteriores, New Horizons, Cassini, Galileo, las Voyager y las Pioneer. Tan cerca que estamos viendo el relieve de los topes de las nubes. En la imagen de arriba, la de la Mancha Roja, se ve un grupo apretado de granitos, justo fuera de la región central oscura que parece más profunda (entre "las 4" y "las 6"). Deben ser fenómenos de convección vertical, como los cumulonimbus terrestres (cada uno del tamaño de una provincia, eso sí). En algunas regiones de nubes blancas (amoníaco suele ser) se han ganado el sobrenombre de "pochoclo":


Aquí las vemos formando parte de algo que se parece a las squall lines (no tengo idea de si hay una palabra en castellano), esas líneas de tormentas características de los frentes fríos:


En las regiones polares, que nunca habíamos visto de frente (ya no de cerca), Juno está revelando océanos de ciclones de una preciosidad difícil de expresar:


Los contrastes entre las zonas y los cinturones, lo frío y lo menos frío, lo que sube y lo que baja, los amoníacos y los sulfuros, los ciclones y los anticiclones, los vientos de cizalla, las inestabilidades y la turbulencia, dan una variedad de nubes que parece no tener fin. Esta imagen muestra una de las llamadas barcazas, del color de la Gran Mancha Roja, navegando entre dos óvalos blancos mientras cae la noche...


JunoCam toma unas imágenes de ángulo muy grande, que producen una perspectiva inusual. La siguiente es un ejemplo de esto, imaginen que están volando en un avión a gran altura y toman una foto panorámica muy ancha hacia abajo, de horizonte a horizonte. Creo que aquí vemos la Mancha Roja Jr. La región hacia la derecha es el comienzo del casquete polar, con sus vórtices azules. Y hacia la izquierda quedan las regiones templadas, con la Gran Mancha Roja ya tras el horizonte. (La imagen es también de Doran, basada en una de Eichstädt.)


Los instrumentos de Juno están diseñados para observar el interior de Júpiter, no su superficie. Pero era una picardía mandar a Júpiter un robot sin ojos, y por suerte a último momento le enchufaron JunoCam, un dispositivo más de public outreach que de observación científica. No sabemos cuánto durará, ya que el ambiente que atraviesa Juno es muy radiactivo y no se espera que la cámara aguante todas las órbitas de la misión.

No puedo cerrar sin mostrar el cambio sufrido por la Gran Mancha Roja desde la visita de Voyager 1 en 1979. Era casi tres veces más ancha que ahora, que es casi circular. Existe desde hace un par de siglos por lo menos, cuando era todavía más grande. ¿Qué pasará en el próximo siglo? ¿Desaparecerá, tal vez siendo reemplazada por otra tormenta gigante y estable? Ésta es una imagen procesada por otro de los genios aficionados, Björn Jónsson:



Las imágenes son de NASA/JPL, procesadas por Björn Jónsson, Gerald Eichstädt, Seán Doran, Damia Bouic y yo mismo. Bájenlas para verlas a pantalla completa. Las reduje bastante, a 1200 píxels de ancho, para meterlas en esta nota, pero las de resolución completa son más impresionantes. Al que le gusten, le recomiendo visitar regularmente unmannedspaceflight.com

Compartir:

sábado, 15 de julio de 2017

El bastión florido

En Gorizia, ciudad pequeña cerca de Trieste, hay un castillo precioso. La fortificación data del siglo XI, y fue ampliada, mejorada y modificada a lo largo de los siglos. A principios del siglo XX ya casi no tenía aspecto de castillo medieval. Pero en la Primera Guerra Mundial, cuando Gorizia se encontró en medio de las tremendas doce batallas del río Isonzo, el castillo resultó severamente dañado. Fue restaurado (andá a saber con cuánta fidelidad) y hoy en día tiene de nuevo un impresionante aspecto medieval, en el punto más alto de la ciudad:


Al entrar al castillo me encontré con la bienvenida de un personaje inesperado en el Friuli: Edmond Halley, empelucado y de tamaño natural. El cartel dice:

In molti conoscono la cometa che porta il mio nome: Edmond Halley —scienziato e ingeniere inglese ma pochi sanno che le mura e i bastioni del Castello di Gorizia sono, in parte, opera mia.*

*¿Necesito traducir del italiano? Bueno: Muchos conocen el cometa que lleva mi nombre: Edmond Halley científico e ingeniero inglés pero pocos saben que los muros y baluartes del Castillo de Gorizia son, en parte, obra mía.

¿Ingeniero? Para mí Halley había sido un destacado astrónomo, amigo de Newton y fundamental en la publicación de los Principia Mathematica. No lo tenía como ingeniero. Militar. En el Adriático.

Les pregunté a las chicas de la boletería de qué se trataba, qué había hecho Halley en el castillo. No tenían idea. Ésto es lo que pude averiguar.

En 1700 se desató una tremenda "guerra mundial", la Guerra de Sucesión Española, al morir Carlos II, el último monarca Habsburgo de España. Los borbones de Francia aspiraban a asegurarse la sucesión del vasto imperio español. Para contrarrestar la hegemonía de Francia, Inglaterra se alió al imperio austríaco en una guerra de 15 años que terminó repartiendo el imperio entre austrias y borbones. El resultado fue sangriento (¡más de medio millón de muertos!), pero aseguró un razonable balance de poder en Europa que acabó durando casi todo el siglo.

En pleno conflicto, en 1702, la Reina Ana Estuardo (primera monarca de la Gran Bretaña) le encargó a Halley una misión importante y secreta: revisar y mapear los puertos adriáticos del imperio austríaco, principalmente Trieste y Bakar. ¿Por qué Halley, un astrónomo? El Almirantazgo lo recomendó. Halley había ya hecho varias expediciones marinas largas y exitosas. Todo había empezado en 1676 cuando se pasó varios años en la isla de Santa Helena catalogando las estrellas del cielo austral. Luego había hecho viajes científico/diplomáticos a cargo de la Royal Society, y finalmente varias exploraciones oficiales para relevar el campo magnético terrestre, vientos y meteorología en todo el Atlántico. Halley había resultado ser un buen capitán, fijate un poco.

En Trieste, en compañía del jefe de ingenieros del Emperador Leopoldo, "repararon y agregaron fortificaciones". En Bakar encontraron todo en orden y "seguro para todo tipo de embarcación". Las biografías de Halley no mencionan otros trabajos aparte de estos en la costa. Pero en una nota del diario triestino Il Piccolo se asegura que, en su libro sobre los orígenes de Gorizia, Giovanni Maria Marussig (contemporáneo de Halley) dice que "los trabajos de fortificación del castillo fueron dirigidos por el célebre ingeniero, astrónomo y matemático Edmondo Halley". Se trataría del Bastión Florido, que no es ninguno de los tres baluartes que se ven en mi foto de arriba sino éste, que queda para el otro lado y se ve así cuando uno va subiendo por el burgo. En años recientes el Bastión Florido albergó un boliche bailable extremadamente popular.

Al pie del burgo del castillo hay un hotel muy lindo, antiguo, en cuya entrada me encontré con otra sorpresa: aquí vivió, en el exilio, Agustín Cauchy, en calidad de profesor del joven Enrique de Chambord, que durante 7 días fue Enrique V de Francia. Uno de los reinados más breves de la historia, pero larguísimo en comparación con el de su tío Luis Antonio, que abdicó en su favor apenas 20 minutos después de recibir el trono de su padre, Carlos X, que abdicó en 1830. El reinado del joven Henri fue revocado por la Asamblea Nacional y todos marcharon al exilio a tierras austríacas. Cauchy no es un personaje muy conocido por el gran público, pero fue uno de los grandes matemáticos del siglo XIX, constructor casi solitario (bueno, está Bolzano) del Análisis Matemático moderno. Montones de teoremas que hemos estudiado en nuestra juventud, algunos sorprendentes, llevan el nombre de Cauchy (incluso el Teorema de Taylor fue demostrado por Cauchy, no por Taylor).

En estos pueblos no podés darte vuelta sin toparte con un pedazo de Historia de la Ciencia.


Correspondence and papers of Edmond Halley, E Fairfield MacPike (Oxford University Press, 1932).

Edmond Halley: Charting the Heavens and the Seas, AH Cook (Oxford University Press, 1988).

L'astronomo Halley dalla cometa al Bastione fiorito del castello, S Bizzi (Il Piccolo, 2015). (No pude conseguir el libro de Massurig para constatarlo.)

La pintura del puerto de Trieste es de Louis Francois Cassas (The town and harbour of Trieste seen from the New Mole, 1802).

Compartir:

sábado, 8 de julio de 2017

SN2017cbv, sin un níquel a su nombre

Cuando explotó la supernova SN 2017cbv subí mi medición inicial del brillo a la American Asociation for Variable Star Observers. Un puñado de otros observadores se me unieron. El mal tiempo otoñal y el posterior viaje al hemisferio norte me impidieron hacer más de tres observaciones. Pero con los datos de los otros observadores podemos ver la evolución del brillo de la supernova, desde su temprana detección un par de semanas antes de alcanzar el máximo, hasta las que veo al momento de escribir esto, a fines de junio.

Cada estrella de esta figura es una observación. Las mías son las tres azules un poco más grandes. Los colores corresponden a cada observador. Son todos datos de la AAVSO, excepto las más tempranas, que son telegramas astronómicos (sí, se llaman así aunque por supuesto no son telegramas, es un sistema en la Web).


Vemos que la supernova aumentó rapidísimo de brillo desde su descubrimiento a magnitud 16 hasta que yo la observé a magnitud 11.5, diez días después. Esas 4.5 magnitudes corresponden a un factor 63 de brillo, que siguió creciendo hasta rozar la undécima magnitud unos 20 días después de la explosión.

La secuencia de eventos es bastante complicada. Primero hay un pulso (invisible) de rayos X debido a la explosión termonuclear que consume en segundos todo el carbono y oxígeno de la enana blanca. Esto produce una bola ardiente en expansión de cenizas termonucleares, en gran parte níquel-56 y cobalto-56, ambos radiactivos. La bola de fuego se expande y amaga con enfriarse en un par de días, pero la radiactividad la recalienta desde adentro y el brillo sube y sube hasta alcanzar un máximo.

El decaimiento radiactivo del níquel-56 es muy rápido: en apenas 6 días la mitad de todos sus átomos (¡inicialmente casi una masa solar!) se han convertido en cobalto-56. Que también es radiactivo, pero con una vida media 10 veces más larga. Así que lo que se ve es un fenómeno típico de la física nuclear: un decaimiento exponencial de la radiactividad. Como la escala de magnitudes es logarítimica, el logaritmo de la exponencial resulta en un decaimiento lineal de la magnitud, exactamente como señalé en el gráfico.

Primero hay un decaimiento rápido (dominado por el del níquel), pero un par de meses después de la explosión ya la cantidad de níquel radiactivo es menos del 1% de la original. Queda todavía un montón de cobalto, que decae más lentamente, así que la pendiente cambia haciéndose 10 veces más lenta, como se ve.

Esta curva de luz de las supernovas de tipo Ia es sorprendentemente robusta. Más aún, cuando uno convierte la magnitud aparente (la que vemos) en magnitud absoluta (verdadero brillo, independiente de la distancia), son todas increíblemente parecidas. No iguales: las que son un poco más brillantes decaen un poco más lento (ver la figura de aquí al lado, cuadro superior). La verdad que no se conocen exactamente los procesos que son responsables de esto. Pero los astrónomos aprendieron a manipularlas matemáticamente de manera que todas las curvas coincidan, como se ve en el cuadro inferior. Así pueden usarlas como "candelas estándar" (estandarizables, estrictamente). Calibrando las distancias de las más cercanas con algún método independiente, les permite calcular la distancia a las más lejanas, aunque ocurran del otro lado del universo. A Saul Perlmutter (el que aparece citado en la figura) le valió el Premio Nobel en Física en 2011 al descubrir de esta manera que la expansión del universo se está acelerando.

Es maravilloso que esta secuencia de eventos se imaginó en la década de 1960, con lápiz y papel y computadoras que hoy darían risa. Y que no fue verificado por observaciones hasta décadas después (los rayos gamma del decaimiento del cobalto-56 se observaron recién en 2014), y que recién en los 90s se empezó a entender en detalle la explosión de las supernovas de los distintos tipos, aunque queda mucho por saber y por observar.


El título de la nota se refiere a la expresión en inglés acerca de no tener "a nickel to my name," que significa no tener un mango (un "duro" en España, etc.). Un nickel es una moneda de 5 centavos. También se escucha "a penny to my name" o "two pennies to rub together". Ésta última se entiende fácilmente, pero lo de "to my name" nunca lo entendí ("a mi nombre", ¿como si fuera una casa?). Está en un relato de Jack London sobre su vida como hobo (croto, en lunfardo).

El gráfico de la estandarización de la curva de luz lo tomé de unas clases de Astronomy 301 de James Lattimer.

Compartir:

sábado, 1 de julio de 2017

El desayuno cuántico

La física cuántica (o, como la llamamos los físicos, la mecánica cuántica) tiene un halo de misterio y paradoja, una reputación intimidante. Esto hace que se preste a la chantada pseudocientífica, como el caso recientemente denunciado por la Asociación Física Argentina.

Hace poco, en una entrevista radial, un reconocido periodista charlaba con un destacado físico argentino y era palpable el interés de los participantes de la mesa en quedarse con una versión supercondensada de la física cuántica, algo para compartir en el café: "¿La física cuántica? Ya lo sé, estudia las cosas más chiquitas que existen". Todo bien, es cierto. Pero dicho así pareciera que la mecánica cuántica sólo se ocupa de cosas alejadísimas de la vida cotidiana: aceleradores de partículas, la radiación de los agujeros negros, el Big Bang, gatos vivos y muertos a la vez y el misterioso entrelazamiento, que parece magia. Digámoslo de una vez: nada más alejado de la realidad.

Todas las mañanas, cuando preparamos el desayuno, en casa usamos este dispositivo cuántico:


¿Cómo? ¡Eso es un tostador! ¡Maqué cuántico! ¡Es un TOS-TA-DOR!

Sí: es un tostador. Cuántico.

¿Ven cómo brillan los alambres del tostador? ¿Por qué brillan? Porque están calientes. Es algo de lo más familar: un cuerpo caliente brilla. En el siglo XIX los físicos estudiaron este fenómeno conocido desde que los hombres de las cavernas inventaron el asado, y descubrieron cuánto brilla en cada color. Es decir, el espectro de un objeto caliente. Y encontraron algo sorprendente: el espectro es el mismo, ya sea que el cuerpo sea un carbón del asado, un pedazo de vidrio, de hierro, o una estrella. El espectro tiene un "pico" en un cierto color (un máximo donde está el máximo brillo) y brilla menos (de una manera matemática precisa) en los colores de longitud de onda mayor o menor que la del pico. Este tipo de fenómeno universal es irresistible para un físico: tiene que entender de dónde sale. Debe haber algún mecanismo único que lo explique.

El fenómeno es extremadamente sencillo: una cosa (cualquier cosa) caliente. Y de hecho su descripción en el contexto de la física de fines del siglo XIX (la mecánica hoy llamada clásica más el electromagnetismo) es un modelo también muy sencillo. Que fracasa estrepitosamente. Muchas de las mejores mentes científicas atacaron el problema: Stefan, Boltzmann, Wien... Lord Rayleigh (el del color del cielo) y James Jeans descubrieron que la energía radiada por un cuerpo caliente dependía de la temperatura T (fenómeno) y de la longitud de onda λ (la letra griega lambda, o sea el color) así:

E = c × T / λ4

donde c es una constante que no viene al caso. No se asusten, miren la fórmula de nuevo que cualquiera la entiende. El fracaso de este resultado radica en que la longitud de onda aparece dividiendo (y encima elevada a la cuarta potencia). ¿Qué pasa cuando la longitud de onda es más chica? La energía es más grande. ¿Y si es más chica todavía? La energía es todavía más grande. Acá no hay un pico: el brillo sube y sube sin parar para longitudes de onda menores y menores: ultravioleta, rayos X, rayos gamma... Si fuera así, cuando prendemos el fuego para el asado, ¡los carbones nos fulminarían con rayos gamma! No way. El fracaso recibió un nombre digno de una banda de rock: catástrofe ultravioleta.

Max Planck, en 1900, encontró la solución: la cosa caliente emite su energía en "paquetes" (los cuantos que le dan nombre a la teoría), cada uno con una energía que sólo puede ser un múltiplo entero de una energía fundamental (que es además proporcional a la frecuencia, o sea la inversa de la longitud de onda). Le dio esto:


Ahí está el pico. Ésta es la ley de radiación de Planck, que explica el espectro de los cuerpos negros que ya han aparecido por aquí. Hay que decir que la ley de Planck fue una cabeza de playa, y que se necesitarían 30 años para tener una teoría razonable de los fenómenos cuánticos. Y es un edificio que no hemos terminado de construir.

Ahí tenés: la mecánica cuántica no es apenas una rareza de fenómenos microscópicos y exóticos. Necesitamos la física cuántica para entender incluso fenómenos cotidianos. Y no sólo esto. La física cuántica está detrás de TODA la civilización tecnológica en la que vivimos hoy en día. ¿La computadora en la que escribo esto? Un dispositivo cuántico. ¿El teléfono donde lo leés? Dispositivo cuántico. ¿Vas a buscar el resultado de la resonancia magnética de la rodilla? No me hagas empezar. ¿Pagás con tarjeta la compra en el supermercado? Una compra cuántica. ¿La cadena de producción y distribución de lo que compraste? Cuántica aunque nadie lo note. ¿Llegás a casa y prendés la luz? ¿Cómo te creés que la generaron, la manipularon, la distribuyeron? Te cambiás la ropa: a menos que críes tus propias ovejas, hiles la lana y la tejas... cuántica. ¿Ponés un CD? Ni hablar. La física cuántica está tan inextricablemente ligada a nuestra vida que decir que "es lo que gobierna las cosas muy chiquititas" es una exageración innecesaria. Las explicaciones tienen que ser lo más sencillas posibles, pero no más sencillas.


Sé que hay gente interesada en entender la física cuántica a un nivel más profundo que el de la divulgación. Es posible hacerlo sin anotarse en Exactas, o masoquearse con libros de texto. Hay un libro notable de Susskind, Quantum Mechanics: The theoretical minimum. Sólo requiere saber (o haber sabido) un poco de álgebra y de análisis matemático. Hay obras de divulgación muy buenas (como el reciente La física cuántica, de Juan Pablo Paz, en Ciencia que Ladra), pero es realmente el formalismo matemático el que pondrá en foco los conceptos "charlados". Tal vez algún día haga el esfuerzo de dar una explicación matemática pero sencilla del problema de la radiación del cuerpo negro y la solución de Planck. Háganme acordar.

Compartir:
Related Posts Plugin for WordPress, Blogger...